Category Archives: Data Collection

Field Data Collection with iForm

Unfortunately the most recent iOS system update rendered the EPI Collect app unusable. Apparently it is no longer being supported on the Apple platform. With this discovery, and a training in Charleston just around the corner, we set out to find a replacement. We searched for another free app for iPads and iPhones that allows you to develop your own data collection form. Fortunately we discovered iForm  which turns out to be even easier to use, and more robust. (NOTE: It is also available for Android devices.)

iFormBulder Website

iFormBulder Website

This app has a lot of similarities with ODK Collect which we recommend for Android users (ODK Collect is described in the Field Data Collection blog post). With iForm you create a free account on the companion iFormBuilder website. You use their online form builder to create your data collection form. The form builder has over 30 different types of data inputs to choose from! For example: text, number, date, time, pick list, phone number, location (GPS coordinates) and images (photographs). Individual data elements can be set up as questions for the data collectors such as: What is the name of the site?

A form being designed on the iFormBuilder site

A data collection form being designed on the iFormBuilder site

Once the form is developed you can begin to collect data.

  • Open the app on your mobile device and login.
  • Tap the Sync button and all the forms and records that are associated with your account will be downloaded to the device.
  • Head out to your project site and collect data.
  • At the first data collection site simply open the data collection form, answer each question, and click Done to save the information.
  • Repeat at each site.
Data collection form while out collecting data on an iPad

Data collection form while out collecting data on an iPad

If you are collecting data while in cellular coverage, the data will be synced to your iFormBuilder cloud account as you go. If you leave cellular coverage that is OK. The on-board GPS receiver on your mobile device will still allow you to collect your locations. Once you are back within cellular range you can Sync your data to your iFormBuilder cloud account. The data can be viewed on the mobile device in tabular or map format. Back in the office the data can be downloaded from the iFormBuilder site in several formats, the most useful of being an Excel spreadsheet. The data in the spreadsheet can then be brought in QGIS or CartoDB and mapped.

Field data being viewed on a map on an iPad

Field data being viewed on a map within the iForm app on an iPad

iForm has some additional features that stream line data collection. You can link your iFormBuilder account to a DropBox or Box account. With this link established your data and photos will be uploaded to a DropBox folder automatically. There are also tools for assigning a form to different users. This allows you to develop one data collection form and share that among a team of data collectors.

The free iFormBuilder account has some limits.  You are limited to 10 forms and 100 records per form. However, you can log in to your account, export the data, and delete those online records and continue data collection.

In summary, iForm is a powerful and intuitive free app for collecting community health data with iPhones, iPad, and Android devices.

Community Health Maps Conducts a Training in the South Carolina Lowcountry

Recently Kurt Menke headed to Charleston, South Carolina to train several groups how to map their communities. This region is also known as the ‘lowcountry’ due to the flat, low elevation geography. The training was hosted by the Medical University of South Carolina (MUSC) and included people from Communities in Schools – Charleston (CISC) and the MUSC College of Nursing.

MUSC Community Health Mapping Training Session

MUSC Community Health Mapping Training at the School of Nursing

First everyone learned how collect GPS field data with iPads. For this we used a new app named iForm. This app was used in lieu of EPI Collect, which no longer supported on iOS. (The next blog post will cover iForm in more detail.) iForm is an app very similar to the Android app ODK Collect, allowing a custom data collection form to be developed. To practice we collected bike rack locations  and seating areas around the MUSC campus. The afternoon was spent working with everyone’s  data. GPS data points were brought into QGIS and shown against some local Charleston GIS data layers.

MUSC Data Points in QGIS

MUSC Data Points in QGIS

The points were also uploaded to CartoDB. CartoDB is another new component of the Community Health Mapping workflow. It has become more intuitive than GIS Cloud and worked really well. (Note: There will be a post on using CartoDB soon too.)

The following day I visited CISC’s Derek Toth and three of his students at St. John’s High School on John’s Island, SC. Over a working lunch Mr. Toth showed students how easy it is to collect GPS points with their iPhones. We collecting several points while walking around the campus.


Mapping the St. Johns Campus

Afterwards we went back inside and showed them how to upload the points into CartoDB and make a map. The figure below shows the results of 45 minutes worth of work! Click on the map to open the live version.

St Johns High School Map

St Johns High School Data Points in CartoDB

This spring these three juniors will be leading the charge to map their island!  They will be presenting their work to the National Library of Medicine later this spring. I look forward to seeing their work!

St. Johns High School Mapping Team

The St. Johns High School Mapping Team from left to right: Jocelyn Basturto, Khatana Simmons, Candace Moorer (MUSC), Corrieonna Roper & Derek Toth (CISC)

Technology + Youth = Change

by Chad Noble-Tabiolo

It all started in May 2013 when I watched the documentary entitled Revolutionary Optimists on PBS’s Independent Lens. It showed how young people from a slum in Kolkata, India were able to map the deficient and unsafe water taps in their community, in order to plea with the government for more and safe drinking water lines. The film highlighted technology in an unconventional way. It showed GIS-technology as an innovative tool to mobilize youth for social change.

This heralded the beginning of a partnership with Map Your World to develop a mapping project in the Philippines in the summer of 2013. Through coordination with domestic and international partners, the youth mapping program was implemented in Southville 7 — an impoverished and neglected slum community, about three-hours south of metro Manila. The issues faced in Southville 7 ranged from lack of access to jobs, water and electricity to food insecurity and child and maternity health; and because of a lack of response from both the government and non-governmental sectors, the project was aimed to raise awareness and demand change.

In just a few weeks, a dozen phones were donated. Youth, ranging from 15 to 23 years old, were trained to go house-to-house to collect data. By the end of three months, 3000 families were surveyed and the needs of the community were mapped. Depicted below is Map 1, which shows the families who have direct access to water in their homes.

Families who have direct access to water in their homes.

Map 1 – Families who have direct access to water in their homes.

Because of the unequal distribution of resources, it was evident who had direct access to water and who did not. Map 2 shows those families who did not have direct access to water. These families had to walk more than 1 kilometer to a communal water tap.

Families who had to walk more than 1 kilometer  to water.

Map 2 – Families who had to walk more than 1 kilometer to access fresh drinking water.

Lastly, Map 3, represents the top four needs according to the three different subdivisions or sites in Southville 7.  Collectively these maps and data provide an opportunity for proper and adequate planning for public health infrastructure and needs.

The top four needs according to the three different subdivisions or sites in Southville 7: Jobs, Water, Electricity and Healthcare.

Map 3 – The top four needs according to the three different subdivisions or sites in Southville 7: Jobs, Water, Electricity and Healthcare.

The Android mobile phones used by the youth were powered by open-source applications for GPS-mapping and data collection. ODK Collect or Open Data Kit was the data collection tool utilized in the project. It can be found on the Android market. (NOTE: This tool is also described in the Community Health Mapping blog post on Field Data Collection). This tool is functional only after uploading a survey form that is created in Microsoft Excel and uploaded to the companion site The maps were created online with Map Your World, an online community mapping tool inspired by the Revolutionary Optimists documentary.

Map Your World Banner

Map Your World Banner

In the end, the 30 youth involved in the mapping project were able to accomplish an endeavor that many people in their community had not expected. They were able to successfully map who in their community had access to water, electricity, jobs and vaccination for children under five years old, among others. They became leaders who are now equipped with leadership and technological skills that many in their community lack. They were empowered to raise awareness about the social injustices and health inequalities existing among them.

One of the community mappers with an array of Android phones.

One of the community mappers with an array of Android phones.

The Southville 7’s mapping work was primarily a vehicle for instilling hope, and the use of GPS/mapping-technology offered an opportunity for the youth to be the voice for their community. According to one youth, “For me, mapping is like knowing. Knowing the problems, and how people are coping with them. Through the work we can open the eyes of the people, not only the things that can help them, but things that can help us all.

Youth mapping their community

Youth mapping their community

Noise Pollution and Health in the Urban Environment: A Pilot Project

In October 2013, the Seattle Indian Health Board’s (SIHB’s) Urban Indian Health Institute (UIHI) completed a noise pollution pilot study. The goals of this project were: 1) to evaluate the feasibility of community data collection and analysis via a low cost GPS/GIS workflow, and 2) to offer recommendations on the feasibility and next steps for scalability to the larger Urban Indian Health Organization (UIHO) network. The collected data could additionally illustrate community health needs when merged with health or other contextual data for analysis, but these analyses were not the primary focus of this pilot. We chose to look at noise pollution because it is an environmental health concern that has been linked to a variety of health conditions in both occupational and community studies and it is easy to measure with portable devices.

For field data collection, we used an iPad Mini with the GISPro and Decibel 10th apps. For mapping and spatial analysis, we used the open source desktop GIS software QGIS ( While GISPro is a paid iPad app, the other programs are free. Data collection participants were staff recruited from the SIHB’s administrative, clinical and UIHI departments. We selected participants from this pool because they are representative of the staff at UIHOs who likely have limited experience with data collection and GIS. UIHI project staff trained seven participants in the iPad workflow and data collection process. This workflow consisted of five steps: 1) collect noise data with Decibel 10th, 2) export noise data via email, 3) take a site picture, 4) collect GIS data with GISPro and 5) export that GIS data.

Select pictures of data collection sites, taken by study participants using an iPad Mini; Seattle, WA

Select pictures of data collection sites, taken by study participants using an iPad Mini; Seattle, WA

When the volunteer participants were finished with data collection, project staff compiled and analyzed the data using QGIS and Stata. Data were merged with socioeconomic indicators from the American Community Survey by zip code. Participating staff were asked for their feedback about their experience and the usability of the tools.

Average decibel reading at the 17 data collection sites and per capita income of zip codes, location of the Seattle Indian Health Board indicated by yellow star; Seattle, WA; October 2013

Average decibel reading at the 17 data collection sites and per capita income of zip codes, location of the Seattle Indian Health Board indicated by yellow star; Seattle, WA; October 2013

That feedback, combined with the experience of project staff, suggested that the GIS software tools were user-friendly and highly effective. Thus, they are likely to be attractive to organizations with limited technology budgets. However, some of the other resources necessary for this project (i.e. the GISPro mapping app, the iPad and general GIS software expertise) are expensive and may be limitations for many UIHOs. In the future, the UIHI would like to use these tools to better understand the health of the community, as well as assist UIHOs in conducting similar projects in their service area.

For more information about this project, view the project brief at

The UIHI is a division of the SIHB and is one of 12 Indian Health Service tribal epidemiology centers (TECs). Unlike the other TECs that focus on geography-specific tribal populations, the UIHI is national in scope, focusing on American Indians and Alaska Natives (AI/ANs) living in urban areas. The UIHI supports the efforts of Urban Indian Health Organizations (UIHOs) nationally, as they serve the health and social support needs of their urban AI/AN communities.

The Center for Public Service Communications and the National Library of Medicine provided funding for the UIHI to complete this project.

Field Data Collection

The workflow covered in the Introduction included three phases: 1) Field Data Collection, 2) Desktop Analysis, and 3) Data Visualization. Here we’ll discuss phase 1.

We encourage the use of smart phones and tablets for data collection for these reasons:

  • Most already have them!
  • Many know how to use them
  • They’re intuitive
  • They’re portable
  • Come with an on board GPS receiver (iPhone 5 uses GPS + GLONASS)
  • Have on board cameras
  • Can connect to wireless networks
  • Access to the internet
  • Email is available
  • There’s an app for that!

Equally as important they are accurate enough for most public health community mapping needs.  For a discussion on their accuracy read this post.

There are a myriad of data collection apps available. Part of choosing one comes down to the operating system you are using. We’ll cover the three best apps we found for iOS and Android. Our full report and individual user step by step user manuals for each can be found here.

iOS (Apple iPhones and iPads)

The two best data collection apps for Apples iOS are EpiCollect and GIS Pro. They both allow you to customize the data attributes you collect. One big difference is that EPI Collect is free and GIS Pro, at $299, is the most expensive piece of software we considered in our workflow. However, with that price tag comes a lot of great intuitive functionality.

EpiCollect (available for both iOS and Android)

To get started with EpiCollect you install the app on your device via Apple’s App Store. You then visit the EpiCollect website  and set up a project. Simply give the project a name and design your data collection form. The form can be set up with a variety of attribute columns. For example, feature type, name, description and photo. For most users it takes a practice run to get used to the workflow to set up a data collection form. The second time it goes very smoothly. The project can then be uploaded, via your email address, to your iOS EpiCollect app. Examples of the data collection screen are shown below. On the left is the home screen, on the right is the data collection screen.

EpiCollect Data Collection

EPI Collect Data Collection


After data collection, you can sync the mobile app with the website. The data can then be viewed both on the mobile app or on the website. The website also allows for the spatial data to be exported as either an XML or CSV file. Data collected by EpiCollect is limited to point locations. The data can then be brought into a desktop GIS such as QGIS. This will be covered in a future blog post.


GIS Pro is essentially a lightweight GIS application for iOS. Once purchased a user can have the app on both an iPhone and an iPad. However, each unique user needs their own license. As with EpiCollect, the user can set up custom data collection fields. One additional feature here is that users can collect point, line or polygon (area) data sets within the same project. The data can also be exported in a shapefile format which is then ready to be used by any desktop GIS package. GISPro also allows for sharing of GIS layers. With this feature a team of data collectors can all be working off of the same GIS layer. This is a valuable feature. With the high cost does come great functionality compared to EpiCollect. This was determined to be part of the best workflow and is reviewed more thoroughly in the final report.


GIS Pro – Exporting Data


In addition to EpiCollect, the other great app for Android devices is OpenData Kit, known as ODK Collect. The app is free. It is even more intuitive and makes project management even easier than EpiCollect.

To get started you will use a companion website called FormHub. Simply sign up for a free account and design your form. Here your data collection form is designed in MS Excel, and a template Excel file makes generating your first form easy. Once designed upload your form and sync your device to your account and you are ready to collect data. On the device the data collection form presents itself as a series of pages for each question.

ODK Collect Workflow

ODK Collect Workflow

When you are back in range of a network simply sync the app with your account. The data will then be available for download from the website in several formats.


These are the best apps we found out of dozens reviewed. All three were successfully tested in 2013 by our partners were found to work well. For additional reading download the full report . Step by step user manuals for each can be found here.

How Accurate is the GPS on my Smart Phone? (Part 2)

In Part 1, I introduced the three parts of the hybrid locational system used by tablets and smart phones. Now I’ll discuss each individually.

Assisted-GPS (A-GPS)

A-GPS is by far the most accurate of the three systems on your phone. A-GPS operates a little differently than the typical handheld GPS receiver. The assistance is provided by the cellular network. When connected to a cellular network the smart phone will download data about the GPS satellite constellation. This allows the phone to lock in on a position much more quickly than it could otherwise. The GPS functionality of a smart phone can still be used if the cellular network is unavailable.  However,  when disconnected from a network your phone will take several minutes to hone in on your location, versus just seconds when the network is available.

The A-GPS receivers on iPhones have steadily improved from the iPhone 3 to the iPhone 5. In addition to the U.S. DOD GPS system, the Russians have a satellite navigation system called GLONASS. The newest smart phones (e.g., iPhone 4S and iPhone 5) now have GPS chips that use both satellite systems giving increased accuracy!  Europe, India and China are also developing satellite navigation systems and in the not too distant future GPS receivers may be able to use several systems simultaneously and become even more accurate.

WiFi and Network Positioning

For any GPS to work the antennae needs a clear view of the sky. Users of smart phones will frequently be in “urban canyons” or indoors. This is where WiFi and cellular network positioning become necessary. Both of these methods are used by smart phones as indoor positioning systems. The phone will use a hybrid approach, using all three methods to locate you. These other two technologies aren’t nearly as accurate as A-GPS, but can still locate you sufficiently to find the closest vanilla latte!

Generally WiFi positioning is more accurate than cellular network positioning. It uses wireless access points and measures the  intensity of the received signal from one or more networks to find the position. Interestingly it doesn’t require your device to be WiFi enabled to work.

Cellular network positioning triangulates your position based off of nearby cell phone towers. Phone companies have precise locations for their cell towers, which when combined with signal strength can be used to approximate your location. Both of these techniques are dependent on overlapping signals from either access points and cellular towers. Therefore they’re more accurate in urban settings.

So What’s It All Mean?

From numerous tests the typical GPS receiver will achieve an accuracy of 1-5 meters.  Unfortunately assisted-GPS accuracies have not been studied nearly as thoroughly as typical GPS receivers. The best studies to date are those by Dr. Paul Zandbergen at the University of New Mexico. In 2009 he published findings showing that an iPhone 3 had an average accuracy of 8 meters. In that study the error never exceeded 30 meters. Below are the results of his 2009 study including all three locational systems.

  • 3G iPhone w/ A-GPS ~ 8 meters
  • 3G iPhone w/ wifi ~ 74 meters
  • 3G iPhone w/ Cellular positioning ~ 600 meters

Numerous anecdotal studies indicate that the iPhone 4S/5 has become more accurate. In 2011 Dr. Zandbergen tested several Android smart phones. Here he found the accuracies to be slightly better than the 2009 study. They ranged from 5-8 meters. It is likely that the iPhone 4S/5 is within this range as well. It can also be assumed that iPads and other Android tablets will be comparable.

Other Options for Increasing Accuracy

There are several third party external GPS receivers that connect to the smart phone via Bluetooth. For example, the Dual 150S can be used to increase accuracy in more remote locations.  It can be worn like a wrist watch, placed on a car dash or strapped to a backpack. It will provide 2.5 meter accuracy and only costs $100.

Dual 150S External GPS Receiver

Dual 150S External GPS Receiver


If getting within 5-8 meters meets your data requirements smart phones and tablets are a great way to go. If you need greater accuracy you can combine an external Bluetooth GPS receiver with your device and get that accuracy down to the 2-3 meter range. If you require more accuracy than that you will need to invest in a mapping grade GPS receiver.

How Accurate is the GPS on my Smartphone? (Part 1)

Historically field data collection was a daunting task reserved for geographic information specialists (GIS) professionals, and the technical savvy crowd. This was largely due to the learning curve involved in operating mapping grade Global Positioning System (GPS) receivers. However, smart phones and tablets have changed that. They offer an amazing array of functionality in a portable, intuitive and ever more familiar interface. Think about all the technology packaged into one of these little devices:

  • GPS
  • Camera
  • Network connection (3G, 4G, WiFi…)
  • Email
  • Internet
  • Apps

They’re actually better than the Tricorders we used to see on StarTrek!  They have a slimmer profile, probably weigh a lot less, have touch screens, bigger displays and can be used with thousands of available apps.

iPhone vs.Tricorder

iPhone vs. Tricorder

One big question when considering smart phones or tablets for field data collection is, “How accurate are they?” A related question that must be answered is, “What kind of accuracy will meet the needs of my project?” You need to answer both of these questions to determine whether or not this technology will work for you. Usually survey grade GPS accuracies (sub meter or sub centimeter) aren’t necessary for public health mapping. Getting within 10 meters is more than adequate to map facility locations, patient addresses, potential sources of disease or wellness.

 How Does GPS Work?

The Global Positioning System (GPS) is a U.S. Department of Defense (DOD) system. It utilizes a constellation of 24 satellites orbiting the earth at an altitude of 12,000 miles. GPS devices compute your position by determining the distance between the GPS receiver and a minimum of 4 GPS satellites. The satellites transmit radio signals to the GPS receivers, allowing the calculations to occur. Initially GPS was established as a military guidance system, and I doubt anyone foresaw the popular use it has today.

The iPhone has been equipped with an onboard GPS since the iPhone 3, and Android phones became GPS enabled at about the same time. Typically people use GPS to find restaurants and street directions. However, there’s no reason these same devices can’t be used for public health data collection!

More About Smart Phone Locational Services 

Smart phones in fact use more than GPS to locate you. They employ a hybrid locational system combining three separate technologies:

  1. Assisted GPS (A-GPS)
  2. WiFi positioning
  3. Cellular network positioning.

These three technologies are used in combination as they are available. A-GPS is the most accurate of the three, and cellular positioning the least accurate. The figure below shows an example of the accuracy of each of these locational services.

Accuracy of iPhone Locations

Zandbergen, P. A. (2009). Accuracy of iphone locations: A comparison of a) assisted gps, b) wifi and c) cellular positioning. Transactions in GIS, 13, 5–25.

GPS Accuracy

There are a number of factors that affect accuracy no matter what GPS receiver is being used. The GPS radio signals encounter differing conditions while travelling through the atmosphere, causing signal delays, and therefore affecting accuracy. The geometry of the satellites being used will also vary. The GPS will have a wider array of satellites to choose from if you’re out in the middle of a big field, versus being on 6th Avenue in Manhattan. You will get better positions if the satellites you’re locked onto aren’t clustered in one part of the sky. Therefore the more sky view you have, the more accurate your GPS will be. In addition to blocking your view of the sky, urban canyons can also cause multipath effects, where the GPS signal bounces off of buildings or other objects reducing accuracy.

In part 2, I’ll discuss each of the three pieces of the hybrid locational system individually, and discuss exactly what kind of accuracy you can expect to achieve.