Tag Archives: GPS

Visualizing an Intervention for Tobacco Control

Submitted by Jennifer Rewolinski

Dr. Heckman, an assistant professor of psychiatry and behavioral sciences at the Medical University of South Carolina (MUSC) in Charleston, used Community Health Maps (CHM) tools in his research on tobacco control. Smoking is the leading preventable cause of death worldwide and costs the US $130 billion in direct medical costs annually. Smoking is still a major public health issue that influences mortality, morbidity, healthcare costs, the environment, and quality of life.

heckman

Dr. Bryan Heckman

The outcome of Dr. Heckman’s precision medicine project will be a mobile app that aids smokers who recently quit by alerting them of proximity to stores which sell cigarettes or alternative nicotine products. Studies show that greater tobacco retailer density is associated with greater incidence of relapse; Dr. Heckman believes that mapping provides a new approach to visualizing environmental factors. A CHM training event at MUSC spurred his decision to integrate mapping into his own work using the CHM labs as a guide. These labs provide step-by-step instructions for implementing the CHM workflow. He used the data collection app Fulcrum on an iPhone to collect information on retailers: GPS coordinates, type, type of tobacco products sold, e-cigarette advertising, and photos. His team also used a high-powered Trimble GPS device to test accuracy of phone GPS, and the accuracy of phone GPS was adequate and more cost effective than more expensive GPS devices.

heckman1

Figure 1. Dr. Heckman’s in progress map shows higher numbers of tobacco retailers are associated with  Census Tracts that have both higher poverty and a higher percentage of minority populations.

Dr. Heckman integrated his Fulcrum data into QGIS software. He added national datasets from the American Community Survey and Behavior Risk Factor Surveillance System for Census tract data, and Synar for retailer data to check the validity of the Fulcrum data; field data collection with Fulcrum revealed a more accurate list of current retailers than the national secondary datasets provided. Dr. Heckman believes QGIS is a powerful tool with many features; he was not only able to use QGIS to monitor and visualize his research questions but also to guide his project decisions and hypotheses. His results will guide policy recommendations, improve access to care, and deliver novel interventions.

Heckman2.png

Figure 2. Dr. Heckman’s in progress map shows higher numbers of tobacco retailers are associated with Census Tracts with higher percentages of minority populations.

For those attempting to undertake a health GIS project on their own, Dr. Heckman emphasized that all the tools needed are provided on the CHM blog; only time and patience are required. He also recommends asking for help and reaching out to other CHM users who have experience. Dr. Heckman’s project has the potential to affect behavior change and reduce health disparities via a mobile intervention app which identifies nearby tobacco retailers and prompts and provides an intervention and awareness of a health issue. Dr. Heckman’s experience is an example of how the CHM blog and tools might be used.

Dr. Heckman would like to thank Kurt Menke and the CHM team, Dr. Williamson from MUSC, and his mentors for inspiration and growth. He would also like to acknowledge the Hollings Cancer Center and American Cancer Society Institutional Research Grant that helps support his work, and Alex Hirsch for his help coordinating the project.

The CHM team would like to extend their own gratitude to Dr. Heckman as they sincerely appreciate his time and his support of the CHM blog.

Mapping Curb Ramp Accessibility around a Silver Spring, MD Assisted Living Facility

Submitted by Jenny Rewolinski, University of Maryland, B.S. Community Health 2016

I just completed a spring internship with the National Library of Medicine (NLM). My goal was to demonstrate what a typical user of the Community Health Maps (CHM) blog might experience, while using the low cost resources it reviews to develop a mapping project with a public health focus. I read through the case studies on the CHM blog and used its labs to develop my project plan and to guide my related decisions.

Because of my experience with elderly relatives and my background in public health, I centered my project on how the senior population of a nearby Assisted Living Facility might safely navigate local sidewalks. According to the 2014 American Community Survey, 23% of people over 65 have some sort ambulatory disability. With this in mind, I decided to map local curb ramps –sloped transitions between sidewalks and streets which function as accessibility enhancements to help those with mobility issues to cross streets safely.

JennyDataCollection

Figure 1. Curb Ramp Data Collection using the iForm app

I used CHM Lab 1: Field Data Collection to learn how to design my own data collection form using iForm. My Curb Ramp form captured curb ramp location, conditions, and other observations such as seniors using the curb ramps, steep or damaged curb ramps, and a lack of sidewalks in the area. As discussed in a prior blog post, How Accurate is the GPS on my Smart Phone?, phone geolocation is usually accurate up to 8 meters. This was not precise enough for my curb ramp data, so I corrected for this on my form.  Over the course of 8 hours spanning 2 days, and with 2 other interns I collected 103 existing curb ramps and locations where curb ramps might aid accessibility.

iFormCurbRampForm

Figure 2. iForm Curb Ramp Data Collection Form

Next, I brought my iForm curb ramp data from my phone into the QGIS software by using instructions from CHM Lab 2: Bringing Field Data into QGIS.  I also used CHM Labs 3: Combining Field Data with Other Organizational Data and CHM Lab 4: Basic Spatial Analysis  to add data layers and to perform spatial analysis to finalize my map.

Map

Figure 3. Curb Ramp Accessibility of Senior Population of Silver Spring Assisted Living Center Map

This is my project map! I completed construction of my map using CHM Lab 5: Cartography with QGIS. In addition to my curb ramp data points, I added data layers for sidewalks, roads, places of interest (such as grocery stores, restaurants, bus stops,  theaters), and my Assisted Living Facility. My goal was to raise awareness of how accessibility can impact seniors’ sense of autonomy and empowerment, and their ability to exercise and to lead a healthier lifestyle. This map also provides recommendations for where more curb ramps should be placed based on observations during data collection. I plan to discuss this map and curb ramp recommendations with the city of Silver Spring and to create “safest route” guides for popular local destinations.

SafestRoute

Figure 4. A Safest Route Guide example showing safe and dangerous routes based on location of curb ramps and sidewalks

GIS has a huge potential to help us analyze health issues. When I began my project at NLM, I thought I would simply be mapping the location of curb ramps near a local Assisted Living Facility; however I discovered the significant need for more curb ramps as well as sidewalks around my project area.

I believe the conclusions I was able to reach by using the low cost CHM resources CHM are accurate and workable. I came to NLM with little to no GIS knowledge yet I learned from the CHM GIS labs, collected curb ramp data points and created a map that may bring awareness to a public health issue. In doing so I believe my experience is typical of many CHM users.

If I can do it, you can too!

Fulcrum Updates The App Designer

We introduced Fulcrum in a recent post and are very impressed with this tool. Recently Fulcrum updated their App Designer. Fields are now divided into categories from the most common and basic fields, to the most advanced.  The groups of fields have also been color coded from green to red to make this arrangement more intuitive. The five categories are: Basic, Choice, Design, Media and Advanced. At the top are Basic fields which include Text, Numbers, Date etc. This reorganization makes finding fields and developing a form even faster.

FulcrumAppDesigner

Re-organization of the Fulcrum App Designer

One category of interest is Design. These are fields that can be used to organize your data collection form. Sections allow you to divide your form into parts. For example, you could separate your main survey questions from your data collector metadata questions. The example App below has two sections: Main section and Data Collection Information.

SectionsFulcrum

A Fulcrum App Using Sections

Organizing your questions like this can help data collectors complete the form, especially for form with a lot of questions. The screenshot below shows how the above form is rendered on a smartphone.

IMG_9524

Data Collection App Implementing Sections on a Smartphone

In future posts we will give some helpful hints to working with Fulcrum including sharing forms, managing data and downloading data. Stay tuned!

Community Health Mapping: A New Year Review

To start the New Year I thought I’d begin with a review of Community Health Mapping (CHM). There are a lot of new project partners, and I thought it would be a good time to give a project overview. CHM is a collaborative effort between the National Library of MedicineCenter for Public Service Communications and Bird’s Eye View. The National Library of Medicine is funding the initiative.

The overall goal is to empower community organizations serving vulnerable or underserved populations with low cost, intuitive mapping technology. Therefore we’ve been working with programs organizations who:

  • Focus on vulnerable populations
  • Frequently use and collect data
  • Need effective, scalable & easy to use mapping tools
  • Lack resources (i.e., for proprietary GIS training & software)

We have identified a suite of tools that allow you to collect custom field data, analyze that data, combine it with other spatial datasets, and generate both static maps and/or dynamic maps on the internet. This allows organizations to collect and work with their own data, and if appropriate, share it with others. CHM involves three components that meet all basic mapping needs:

  • Field Data Collection
  • Desktop Analysis and Cartography
  • Internet Mapping
Community Health Mapping Workflow

Community Health Mapping Workflow

A given project may not require all three, however, collectively these components address the basic needs of all mapping projects.

Field Data Collection:

Rather than focusing on the use of expensive GPS receivers, we recommend the use of smart phones and tablets for these reasons:

  • Most community-based organizations already have them!
  • Many know how to use them
  • They’re intuitive
  • They’re portable
  • They come with an on board GPS receiver (iPhone 5 uses GPS + GLONASS)
  • Have on board cameras
  • Can connect to wireless networks
  • Access to the internet
  • Email is available
  • “There’s an app for that!”
SmartPhones and Tablets vs. Traditional GPS Receivers

SmartPhones and Tablets vs. Traditional GPS Receivers

Of course an important consideration is horizontal accuracy. You can read our blog post on that topic to see if mobile smart devices meet your project needs.

When collecting data you need to be able to develop your own custom data collection form. The top three mobile apps we have found are:

Desktop Analysis and Cartography:

After community field data collection, the next step typically involves bringing the data into a desktop GIS. This is the middle step in the workflow. Here the data can be viewed against basemaps such as Google or OpenStreetMap, and combined with other organizational data. This is also where analyses (proximity, density etc.) can be conducted. Presentation quality maps can also be generated in this step.

The software we found to be the best fit is QGIS. This is an open source desktop GIS software. It has many strengths:

  • It can consume many kinds of data, including all the data that would come out of the field data collection apps.
  • It is both intuitive and robust.
  • It has a large suite of geoprocessing tools for analyzing data.
  • It will run on Windows, Mac, or Linux.
  • It is free to download and install.
  • It is well documented.
  • There is a large user community.
  • New functionality is being continuously added. New stable versions are being released every 4 months!
Baltimore Diabetes Data in QGIS Desktop

Baltimore Diabetes Data in QGIS Desktop

Web Presentation

Often you may want to present an interactive map of your results. Interactive means the map reader can zoom in/out, pan the map and turn layers off and on. For this we recommend CartoDB.

You can sign up for a free account, which gives you 50Mb of storage space. Data can be collected with a smart phone or tablet and brought directly into CartoDB.  It is a very intuitive platform. You can literally drag and drop a spreadsheet onto the CartoDB page and have the data upload to your account.  It will accept the most common geospatial file formats including: spreadsheets and comma delimited text files with addresses or coordinates, KML/KMZ, GPX, and shapefiles.

CartoDB also has great documentation including:

Baltimore Diabetes Data in CartoDB

Baltimore Diabetes Data in CartoDB

In Conclusion

This blog has a lot of resources including reviews of mapping technology and case studies. You might begin by clicking on some of the links in this entry. We are also working on a 6 lab CHM curriculum that interested parties will be able to use to hone their skills. Stay tuned for that!

We are always looking for new partners and continuously work to support current project partners. If you are interested, or have questions please don’t hesitate to contact John Scott (jscott at cpsc.com) or Kurt Menke (kurt at birdseyeviewgis.com). Most importantly get out and do some mapping in 2016!

 

 

 

Field Data Collection with Fulcrum

Fulcrum was reviewed in our initial survey of field data collection apps in 2012, and almost made the top three. In the last 3 years Fulcrum has improved and has become perhaps the most intuitive and useful data collection app we’ve evaluated period.

It is available for both iOS and Android. It isn’t free, but the subscription fee is affordable. It costs anywhere from $18 – $25 per month. The three pricing plans give you 10 – 30Gb of online storage, which is substantial. Fulcrum offers a free 30 day trial which includes all the functionality. You can use this option to test Fulcrum for your projects. In the following example, I will be using a health care facility data collection form to show how Fulcrum works.

Fulcrum has the most intuitive data collection form builder of any app we’ve seen. When you design a form Fulcrum calls it an ‘app’. Simply drag and drop from the Add Fields section to your ‘app’ to add questions (see figure below). Available data input types include text, numbers, date, single or multiple choice, photos, videos, and audio.  There are no tricks to collecting GPS locations as with iForm. Fulcrum collects locations automatically.

A health care facility data collection form in Fulcrum.

A health care facility data collection form in Fulcrum.

Once a field has been added simply set you parameters. The figure below shows the facility type question being edited. To do this simply click on a field, and fill out the details. It’s so easy a 50 year old can do it!

The health care facility type question parameters.

The health care facility type question parameters.

The companion mobile app can be downloaded for free from the Apple Store or the Google Play Store. Once installed, login and your data collection app(s) will sync with your mobile device. The figure below shows the health care facilities data collection app on an iPhone. Answering the questions is intuitive. Once collected your data will be synced with your cloud account.

Health Care Facilities data collection form on an iPhone

Health Care Facilities data collection form on an iPhone

Once back in the office, login to your account, select your data collection app, and choose Start Export Wizard. You will be taken to the page below. Choose your file format. A complete array of GIS formats is available including: shapefiles, geodatabases, KML, PostGIS and Spatialite.  Choose any other appropriate options and click Next to download your data.

Fulcrum Data Export Options

Fulcrum Data Export Options

I highly recommend that everyone involved in Community Health Mapping evaluate Fulcrum. Along with iForm and ODK Collect is a CHM recommended data collection tool. There is a monthly subscription fee but it is low. It is the easiest and most flexible tool we’ve found. You can use the free 30 day trial period to see if it works for you.

Teens Map Environmental Health of Their Community (Sea Islands, South Carolina)

By Guest Blogger: Derek Toth – Communities in Schools Charleston

The Teen Health Leadership Program (THLP) is in their eight year of existence at St. John’s High School on Johns Island. The program gathers leaders of the school together and focuses on a health topic they feel is affecting their community and assists the community in understanding this topic through the use of media dissemination.  In the past, topics included Autism, Cancer, Stress, Obesity and Alcohol and Drugs and This year, the students wanted to look at their community as a whole with a topic of Environmental Health.

The THLP students wanted to see what makes their Sea Island community different.  The Sea Islands are composed of John’s Island, Wadmalaw Island, Seabrook Island and Kiawah Island outside of Charleston, South Carolina.  Students primarily come from John’s and Wadmalaw Islands. These islands are extremely different for many reasons. The students wanted to be able to translate these differences in a new form for the Teen Health Leadership Program. The students were presented with an opportunity to use the Community Health Mapping tools discussed on this blog, and some training made available from the National Library of Medicine. With GIS, the students can pin point differences within the islands for their community to see.

(This January Kurt Menke conducted a Community Health Map training at the Medical University of South Carolina College of Nursing.  Two teachers with Communities in Schools Charleston attended and the next afternoon Kurt Menke went to St. John’s High School and showed the students how to map their campus with their iPhones.) 

Derek Toth teaching his students to map their campus

Derek Toth teaching his students to map their campus

The students used smart phones, along with an app named iForm, to map points of interest with GPS. They collected well water locations, ground and city water sources, as well as, places in the community to purchase food. The food resources they mapped included farmers markets, produce stands, grocery stores and local farms. The students were able to indicate these points on a map. Google maps was used to create the final map.

With the final map they were able to determine that people on Wadmalaw Island have less access to food and water than those on St. John’s Island. For example, Wadmalaw Island is limited in places to buy produce or groceries, and has limited access to the farms that John’s Island has. Residents of Wadmalaw Island are on well water, and obtain their produce at the local grocery store on Johns Island, as opposed to driving to one of the many local farms.

Teen Health Leadership Program Seal Islands Access to Food and Water

Teen Health Leadership Program Seal Islands Access to Food and Water

The final  map was inserted into the Environmental Health project for the community to have a unique perspective of their Sea Island Community. Overall, the students felt that using their smart phones to map their community was easy to learn and fun. They were able to grasp the information quickly and seemed pleased with their results. The group feels it reached it’s goal of accomplishing a fresh look at the Sea Islands and felt it added to their presentation on Environmental Health.

Field Data Collection with iForm

Unfortunately the most recent iOS system update rendered the EPI Collect app unusable. Apparently it is no longer being supported on the Apple platform. With this discovery, and a training in Charleston just around the corner, we set out to find a replacement. We searched for another free app for iPads and iPhones that allows you to develop your own data collection form. Fortunately we discovered iForm  which turns out to be even easier to use, and more robust. (NOTE: It is also available for Android devices.)

iFormBulder Website

iFormBulder Website

This app has a lot of similarities with ODK Collect which we recommend for Android users (ODK Collect is described in the Field Data Collection blog post). With iForm you create a free account on the companion iFormBuilder website. You use their online form builder to create your data collection form. The form builder has over 30 different types of data inputs to choose from! For example: text, number, date, time, pick list, phone number, location (GPS coordinates) and images (photographs). Individual data elements can be set up as questions for the data collectors such as: What is the name of the site?

A form being designed on the iFormBuilder site

A data collection form being designed on the iFormBuilder site

Once the form is developed you can begin to collect data.

  • Open the app on your mobile device and login.
  • Tap the Sync button and all the forms and records that are associated with your account will be downloaded to the device.
  • Head out to your project site and collect data.
  • At the first data collection site simply open the data collection form, answer each question, and click Done to save the information.
  • Repeat at each site.
Data collection form while out collecting data on an iPad

Data collection form while out collecting data on an iPad

If you are collecting data while in cellular coverage, the data will be synced to your iFormBuilder cloud account as you go. If you leave cellular coverage that is OK. The on-board GPS receiver on your mobile device will still allow you to collect your locations. Once you are back within cellular range you can Sync your data to your iFormBuilder cloud account. The data can be viewed on the mobile device in tabular or map format. Back in the office the data can be downloaded from the iFormBuilder site in several formats, the most useful of being an Excel spreadsheet. The data in the spreadsheet can then be brought in QGIS or CartoDB and mapped.

Field data being viewed on a map on an iPad

Field data being viewed on a map within the iForm app on an iPad

iForm has some additional features that stream line data collection. You can link your iFormBuilder account to a DropBox or Box account. With this link established your data and photos will be uploaded to a DropBox folder automatically. There are also tools for assigning a form to different users. This allows you to develop one data collection form and share that among a team of data collectors.

The free iFormBuilder account has some limits.  You are limited to 10 forms and 100 records per form. However, you can log in to your account, export the data, and delete those online records and continue data collection.

In summary, iForm is a powerful and intuitive free app for collecting community health data with iPhones, iPad, and Android devices.